skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Gasset, Maria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gasset, Maria (Ed.)
    The social amoeba Dictyostelium discoideum is a model for a wide range of biological processes including chemotaxis, cell-cell communication, phagocytosis, and development. Interrogating these processes with modern genetic tools often requires the expression of multiple transgenes. While it is possible to transfect multiple transcriptional units, the use of separate promoters and terminators for each gene leads to large plasmid sizes and possible interference between units. In many eukaryotic systems this challenge has been addressed through polycistronic expression mediated by 2A viral peptides, permitting efficient, co-regulated gene expression. Here, we screen the most commonly used 2A peptides, porcine teschovirus-1 2A (P2A), Thosea asigna virus 2A (T2A), equine rhinitis A virus 2A (E2A), and foot-and-mouth disease virus 2A (F2A), for activity in D. discoideum and find that all the screened 2A sequences are effective. However, combining the coding sequences of two proteins into a single transcript leads to notable strain-dependent decreases in expression level, suggesting additional factors regulate gene expression in D. discoideum that merit further investigation. Our results show that P2A is the optimal sequence for polycistronic expression in D. discoideum , opening up new possibilities for genetic engineering in this model system. 
    more » « less
  2. Gasset, Maria (Ed.)
    Francisella tularensisis an extremely infectious pathogen and a category A bioterrorism agent. It causes the highly contagious zoonosis, Tularemia. Currently, FDA approved vaccines against tularemia are unavailable.F.tularensisouter membrane protein A (FopA) is a well-studied virulence determinant and protective antigen against tularemia. It is a major outer membrane protein (Omp) ofF.tularensis. However, FopA-based therapeutic intervention is hindered due to lack of complete structural information for membrane localized mature FopA. In our study, we established recombinant expression, monodisperse purification, crystallization and X-ray diffraction (~6.5 Å) of membrane localized mature FopA. Further, we performed bioinformatics and biophysical experiments to unveil its structural organization in the outer membrane. FopA consists of 393 amino acids and has less than 40% sequence identity to known bacterial Omps. Using comprehensive sequence alignments and structure predictions together with existing partial structural information, we propose a two-domain organization for FopA. Circular dichroism spectroscopy and heat modifiability assay confirmed FopA has a β-barrel domain consistent with alphafold2’s prediction of an eight stranded β-barrel at the N-terminus. Small angle X-ray scattering (SAXS) and native-polyacrylamide gel electrophoresis revealed FopA purified in detergent micelles is predominantly dimeric. Molecular density derived from SAXS at 31 Å shows putative dimeric N-terminal β-barrels surrounded by detergent corona and connected to C-terminal domains via flexible linker. Disorder analysis predicts N- and C-terminal domains are interspersed by a long intrinsically disordered region and alphafold2 predicts this region to be largely unstructured. Taken together, we propose a dimeric, two-domain organization of FopA in the outer membrane: the N-terminal β-barrel is membrane embedded, provides dimerization interface and tethers to membrane extrinsic C-terminal domain via long flexible linker. Structure determination of membrane localized mature FopA is essential to understand its role in pathogenesis and develop anti-tularemia therapeutics. Our results pave the way towards it. 
    more » « less